Nonlinear automorphism of the conformal algebra in 2D and continuous $$ \sqrt{T\overline{T}} $$ deformations

نویسندگان

چکیده

The conformal algebra in 2D (Diff($S^{1}$)$\oplus$Diff($S^{1}$)) is shown to be preserved under a nonlinear map that mixes both chiral (holomorphic) generators $T$ and $\bar{T}$. It depends on single real parameter it can regarded as ``nonlinear $SO(1,1)$ automorphism.'' preserves the form of momentum density naturally induces flow energy by marginal $\sqrt{T\bar{T}}$ deformation. In turn, general solution corresponding equation deformed action analytically solved closed form, recovering automorphism. CFT$_{2}$ also described through original theory field-dependent curved metric whose lapse shift functions are given variation Hamiltonian with respect densities, respectively. symmetries theories then seen arise from diffeomorphisms fulfill suitably Killing equations. Besides, Cardy formula itseft As simple example, deformation $N$ free bosons briefly addressed, making contact recent related results dimensional reduction ModMax theory. Furthermore, between its ultra/non-relativistic versions (BMS$_{3}$$\approx$CCA$_{2}$$\approx$GCA$_{2}$), including finite deformation, recovered limiting case extension three-parameter $ISO(1,1)$ automorphism algebra, discrete BMS$_{3}$ discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

the analysis of the role of the speech acts theory in translating and dubbing hollywood films

از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...

15 صفحه اول

the survey of the virtual higher education in iran and the ways of its development and improvement

این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.

the crisis of identity in jhumpa lahiris fiction: interpreter of maladies and the namesake

شکل گیری هویت(identity) مقوله مهمی در ادبیات پراکنده مردم(diasporan literature) می باشد. آثار جومپا لاهیری(jhumpa lahiri) ، نویسنده هندی آمریکایی، در سالهای اخیر تحسین منتقدین را به خود معطوف کرده است. وی در این آثار زندگی مهاجران و تلاش آنان برای پیدا کردن جایگاهشان در یک فرهنگ بیگانه را به تصویر کشیده است. این تجربه همواره با احساساتی نظیر دلتنگی برای گذشته، بیگانگی و دوری همراه است. با این ح...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2022

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep12(2022)129